DNA Topology

De Witt Sumners

Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many important cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This talk will discuss topological models for DNA strand passage and exchange, introducing the tangle model for analysis of DNA site-specific recombination experiments.